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Abstract 
We study optimal public and secret reserve prices for risk averse sellers in second price 
auctions with endogenous entry. We show that an optimal public reserve price rP (observed by 
buyers prior to making their entry decisions) is above the seller’s cost, c, whereas the secret 
reserve price rS (observed by buyers only upon entering the auction) is below the revenue 
maximizing reserve price r0. Thus, risk aversion raises public reserve prices, but lowers secret 
reserve prices. Further, we show that an optimal public reserve price is smaller than the secret 
reserve price (i.e., rP < rS). Hence, for a risk averse seller public and secret reserve prices are 
ordered: c < rP < rS < r0. 
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1 Introduction

Auction theory typically assumes that the seller is risk neutral. There are two good

reasons for this assumption: First, sellers are often �rms or government agencies

whose objective is to maximize revenue. Second, risk neutrality facilitates the use

of powerful methods from the mechanism design literature to characterize the opti-

mal auction. The rise of the internet, however, has led to widespread consumer-to-

consumer auctions on websites such as eBay. In these auctions, sellers are likely to

be risk averse. Furthermore, the number of bidders is determined endogenously.

We study optimal public and secret reserve prices for risk averse sellers in second

price auctions in which buyers simultaneously choose whether to enter the auction.

Entering the auction entails an entry cost, which we assume is the same for all buyers.

A buyer who enters the auction observes her value for the object and then bids. The

entry cost may be interpreted as the buyer�s cost of learning his value for the item at

auction. Buyers�values are private, and independently and identically distributed.

When the reserve price is public, that is, observed by buyers prior to making their

entry decisions, the seller must take account of how the reserve price in�uences the

buyers�entry decisions. Classic papers by McAfee and McMillan (1987) and Levin

and Smith (1994) established that with a homogenous entry costs, a reserve price

equal to the seller�s cost, c, is optimal for a risk neutral seller. We show that an

optimal public reserve price for a risk averse seller, rP , is above his cost, i.e., c < rP .

When the reserve price is secret, the seller�s choice of reserve price and buyers�

entry decisions are e¤ectively simultaneous. Hence the equilibrium reserve price max-

imizes the sellers�payo¤ given the bidders�entry decisions. For auctions with a �xed

number of bidders, Hu, Matthews and Zou (2010) established that the optimal reserve

price is independent of the number of bidders, and is smaller the more absolutely risk

averse is the seller. An immediate implication of this result in our setting is that the

secret reserve rS is independent of the bidders�entry decisions, and is smaller the

more absolutely risk averse is the seller. In particular, when the seller is risk averse

the secret reserve price is below the revenue maximizing reserve price r0; i.e., rS < r0:

Taken together, these results establish that risk aversion has opposing e¤ects on
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the optimal public and secret reserve prices: it raises public reserve prices, but lowers

secret reserve prices. In addition, we show that if the seller is risk averse, an optimal

public reserve price is smaller than the secret reserve price, i.e., rP < rS. Hence, for

a risk averse seller, public and secret reserve prices are ordered: c < rP < rS < r0.

2 Model

A single item is allocated using a second-price sealed-bid auction with a reserve

price. There are N � 2 risk-neutral buyers who simultaneously decide whether to

enter the auction. (While attitudes do not in�uence bids in a second price auction,

they a¤ect payo¤s to entering the auction.) Entering the auction entails a cost e >

0. Upon entering the auction, a buyer observes her value and then bids. Buyers�

values are independently and identically distributed on an interval [0; !] according

to a distribution function F with continuous density f; and increasing hazard rate

�(x) = f(x)=[1� F (x)]: The seller�s cost of providing the item is c 2 [0; !):
Assuming that bidders follow their dominant strategy of bidding their value, if

n � 1 bidders enter the auction and the reserve price is r 2 [c; !], then the payo¤ to
an entering bidder is

U(r; n) =

Z !

r

�Z y

r

F (x)n�1dx

�
f(y)dy:

Clearly U is decreasing in r and n.

If all buyers enter the auction with the same probability p, the number of bidders

in the auction follows a binomial distribution B(N; p): Denote by pNn (p) the binomial

probability that there are exactly n 2 f0; 1; : : : ; Ng bidders in the auction. The
expected payo¤ of a buyer who enters the auction when every other buyer enters the

auction with probability p is U(r; p)� e; where

U(r; p) =
N�1X
n=0

pN�1n (p)U(r; n+ 1):

Since U is decreasing in r so is U. And since U(r; n) is decreasing in n, and for
p00 > p0 the binomial distribution B(N � 1; p00) �rst order stochastically dominates
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B(N � 1; p0), then U is decreasing in p. The payo¤ of a buyer who does not enter the
auction is zero.

In a symmetric equilibrium of the entry game, each buyer enters the auction with

a probability p� that solves the problem

max
p2[0;1]

p(U(r; p�)� e): (1)

Since U is decreasing in p, then p� = 1 whenever U(r; 1) � e; and p� = 0 whenever
U(r; 0) � e, whereas p� 2 (0; 1) is the unique solution to the equation

U(r; p)� e = 0

otherwise. Denote by �(r) the unique solution to (1). It is easy to see that �0(r) < 0

whenever �(r) 2 (0; 1).
In order to rule out trivial cases where there is no entry or buyers enter with

probability one, we assume that

U(c; 1) < e < U(c; 0):

Thus, �(r) < 1 for r 2 [c; !]; and �(r) > 0 for r near c.
Denote by v : R ! R the von Neumann-Morgenstern utility function represent-

ing the seller�s preferences. We assume that v is twice continuously di¤erentiable,

increasing and concave, and normalize v so that v(0) = 0 and v0(0) = 1. Thus, the

utility function of a risk-neutral seller is v(x) = x: The seller�s Arrow-Pratt measure

of absolute risk aversion is R(x) := �v00(x)=v0(x): Hence R(x) � 0 when the seller is
risk neutral.

In an auction with a reserve price r 2 [c; !] and n bidders, the seller�s expected
utility is V (r; 0) = 0, and for n � 1 it is

V (r; n) = n(1� F (r))F (r)n�1v(r � c) +
Z !

r

v(x� c)dG(n)2 (x); (2)

where G(n)2 the c.d.f. of the second highest value. Clearly V (r; n) is increasing in n:

If the seller is risk neutral, then (2) identi�es seller pro�t, which we write as �(r; n):

The seller�s expected utility when all buyers enter with the same probability p is

V(r; p) =
NX
n=0

pNn (p)V (r; n): (3)
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Since V (r; n) is increasing in n and B(N; p00) �rst order stochastically dominates

B(N; p0) for p00 > p0, then V(r; p) is increasing in p. If the seller is risk neutral,
(3) identi�es seller pro�t when the reserve price is r and each bidder enters with

probability p, which we write as �(r; p).

3 Results

The reserve price is public when it is observed by buyers prior to making entry

decisions. In this scenario, the seller and buyers face a dynamic game in which the

seller �rst chooses the reserve price r 2 [c; !]; and then buyers, upon observing r;
simultaneously choose whether to enter. We focus on subgame perfect equilibria in

which buyers follow symmetric strategies. In a subgame perfect equilibrium bidders

enter according to �, and the public reserve price solves the problem

max
r2[c;!]

V(r; �(r)):

We say that r is an optimal public reserve price if (r; �) is a subgame perfect equilib-

rium of the auction.

A direct implication of Levin and Smith (1994)�s Proposition 6 is that if the seller

is risk neutral, then there is a unique optimal public reserve price, which is equal to

the seller�s cost, c. Proposition 1 establishes that a risk averse seller sets a reserve

price greater than a risk neutral seller.

Proposition 1. If the seller is risk averse, then an optimal public reserve price rP
satis�es rP > c:

Proof : Di¤erentiating (3) we may write

dV(r; �(r))
dr

����
r=c

� d�(r; �(r))

dr

����
r=c

= �0(c)

NX
n=0

dpNn (p)

dp
[V (c; n)� �(c; n)] (4)

+

NX
n=0

pNn (�(c))

�
@V (r; n)

@r

����
r=c

� @�(r; n)

@r

����
r=c

�
:

Since v(0) = 0 and v0(0) = 1; di¤erentiating equation (2) yields

@V (r; n)

@r

����
r=c

= n(1� F (c))F (c)n�1;
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which is independent of the seller�s utility function v. Therefore the second term in

(4) is zero. As for the �rst term, we have

V (c; n)� �(c; n) = �
Z !

c

[x� c� v(x� c)]dG(n)2 (x) = �
Z !

0

�(x)dG
(n)
2 (x);

where �(x) := 0 for x � c; and �(x) := x� c� v(x� c) for x > c. Thus, �0(x) = 0
for x � c and �0(x) = 1�v0(x�c) > 0 for x > c (because v0(0) = 1 and v is concave),
and therefore � is increasing. Furthermore, since G(n+1)2 (x) �rst order stochastic

dominates G(n)2 (x), then V (c; n)� �(c; n) is decreasing in n. And since the binomial
distribution B(N; p00) �rst order stochastically dominates B(N; p0), whenever p00 > p0;

and since V (c; n)� �(c; n) is decreasing in n, then

NX
n=0

pNn (p)[V (c; n)� �(c; n)]

is decreasing in p. Since �0(c) < 0; and �(r; �(r)) is maximized at r = c, i.e.,

d�(r; �(r))=drjr=c = 0; then

dV(r; �(r))
dr

����
r=c

= �0(c)
NX
n=0

dpNn (p)

dp
[V (c; n)� �(c; n)] > 0;

which establishes the proposition. �

The reserve price is secret when it is observed by buyers only upon entering the

auction, and is therefore unknown to the buyers when making entry decisions. In this

scenario, the seller and buyers face a static game. A Nash equilibrium of this game

is a pair (rS; pS) 2 [c; !]� [0; 1] such that rS solves the problem

max
r2[c;!]

V(r; pS);

and pS solves the problem

max
p2[0;1]

p(U(rS; pS))� e):

Thus, if (rS; pS) is a Nash equilibrium, then pS = �(rS).

There are always trivial no-entry Nash equilibria in which the reserve price is

high and buyers do not enter: a high reserve price is optimal when buyers enter with

probability zero, and entering with probability zero is optimal when the reserve price
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is high. However, we focus on the (trembling hand) perfect equilibria, in which the

reserve price is optimal for the seller when buyers enter with a vanishingly small

probability.

By Proposition 5 in Hu, Matthews and Zou (2010), in a second price sealed-bid

auction with n � 2 bidders, the unique reserve price that maximizes the seller�s

expected utility, V (�; n), is the solution of the equation

�(r) :=
1

�(r)
� v(r � c)
v0(r � c) = 0; (5)

which is independent of n. Hence, for any p > 0; the reserve price that uniquely

maximizes V(�; p) is the solution to equation (5). Moreover, by Theorem 2 in Hu,

Matthews and Zou (2010), this reserve price is smaller the more absolute risk averse is

the seller. Noting that these results hold when n = 1 as well, Proposition 2 describes

their implications for auctions with endogenous entry in which the reserve price is

secret.

Proposition 2. When the reserve price is secret, there is a unique perfect equilibrium.

In this equilibrium the reserve price rS, which is the solution to equation (5), is

independent of the number of buyers N , and is smaller the more absolute risk averse

is the seller.

When the seller is risk neutral, the equilibrium secret reserve r0 is the solution

to the equation r = c + 1=�(r); hence r0 > c. Theorem 1 describes the e¤ects of

seller risk aversion in auctions with public and secret reserve prices. Risk aversion

has opposite e¤ects when the reserve is public and when it is secret: it raises optimal

public reserve prices above c, but lowers the secret reserve below r0.

Theorem. If the seller is risk averse, then an optimal public reserve price is below

the secret reserve price, and hence c < rP < rS < r0.

Proof: Let rP be any optimal public reserve price. First, we show that rP � rS: Let
r > rS: Since rS uniquely maximizes V (�; n) for all n � 1 (see the proof of Proposition
5 in Hu, Matthews and Zou (2010)), then V (r; n) < V (rS; n) for all n � 1. Hence

V(r; �(r)) < V(rS; �(r)). Also, since � is decreasing, the binomial B(N; �(rS)) �rst
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order stochastically dominates B(N; �(r)), then V(rS; �(r)) � V(rS; �(rS)). Therefore
V(r; �(r)) < V(rS; �(rS)), and hence rP � rS:
Now we show that rP 6= rS: Since �(r) > 0; and therefore V(r; �(r)) > 0; for r

near c; then �(rP ) > 0: Hence rP < rS whenever �(rS) = 0. Suppose that �(rS) > 0:

Then �0(rS) < 0: Di¤erentiating equation (3) yields

dV(r; �(r))
dr

=
@V(r; p)
@r

+
@V(r; p)
@p

�0(r).

Again, since rS uniquely maximizes V (�; n); then

@V(r; p)
@r

����
r=rS

=
NX
n=0

pNn (p)
@V (r; n)

@r

����
r=rS

= 0:

Further, @V(r; p)=@p > 0 and �0(rS) < 0 imply
@V(r; p)
@p

����
r=rS

�0(rS) < 0:

Hence
dV(r; �(r))

dr

����
r=rS

< 0;

and therefore rP 6= rS:
Since c < rP by Proposition 1, and rS < r0 by Proposition 2, then

c < rP < rS < r0: �

An implication of our theorem is that pro�t is maximal when the reserve price is

public and the seller is risk neutral.
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